
The Power of Digitization: Implementing a PQM system on a WWTP (Metro Vancouver)

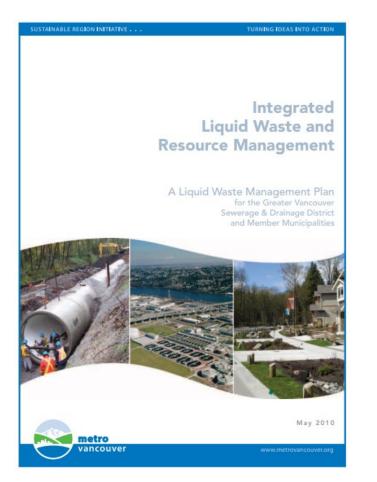
Yoann Briant, .ing / Tirtho Dutta Gupta, P.Eng.

Confidential Property of Schneider Electric

Agenda

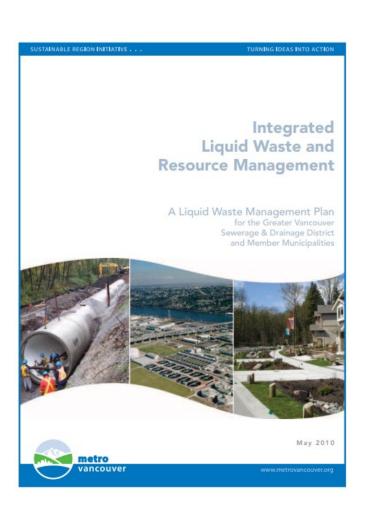
Annacis Island WWTP

Equipment


- Pumps
- Fans
- Drives
- Automation
- Lab equipment

Power

Good Power



Goal 1: Protect public health and the environment

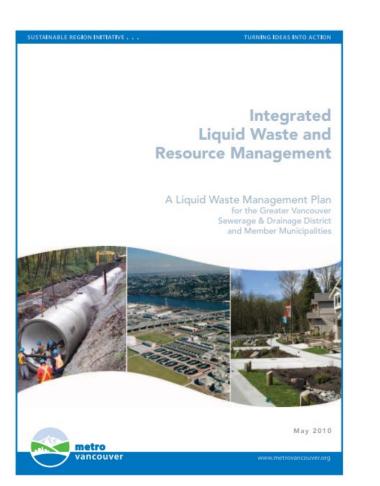
Goal 2: Use liquid waste as a resource

Goal 3: Effective, affordable and collaborative management

Goal 1: Protect public health and the environment

STRATEGY 1.3

Reduce environmental impacts from liquid waste management to a minimum


Metro Vancouver and municipalities will maintain and operate their liquid waste infrastructure, make improvements to meet evolving regulatory requirements and reduce risks to the environment

METRO VANCOUVER WILL:

System Operation and Maintenance

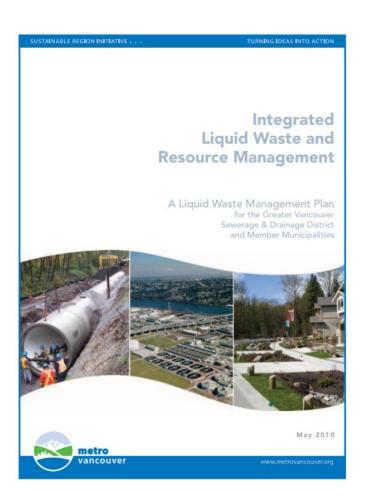
1.3.1 Develop and implement operational plans for sewerage and wastewater treatment facilities to ensure infrastructure reliability and optimal performance. *Ongoing*

Goal 2: Use liquid waste as a resource

STRATEGY 2.1

Pursue liquid waste resource recovery in an integrated resource recovery context

METRO VANCOUVER WILL:

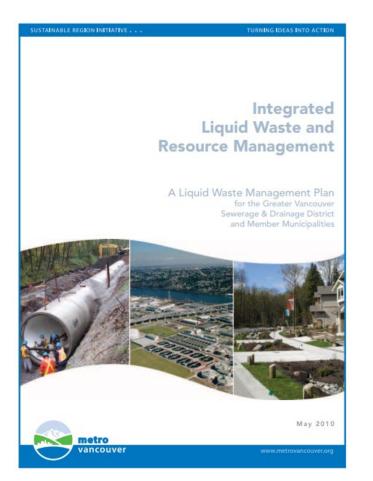

- 2.1.1 Assess each sewerage area using an integrated resource recovery business case model that: 2012
- (a) evaluates opportunities to expand the recovery of energy, nutrients and water from the liquid waste system

ENERGY

Gas from wastewater treatment processes is turned into electricity and heat for use in treatment plants

Goal 3: Effective, affordable and collaborative management

STRATEGY 3.2


Use innovative approaches and technologies

This plan seeks improvement through innovation, using local research and development and adapting successes from elsewhere, to address pollutants of emerging concern, improve wastewater treatment, implement more sustainable stormwater management practices and reduce long-term financial burdens.

METRO VANCOUVER WILL:

- 3.2.1 With financial support from provincial and federal governments and the University of British Columbia, develop the Annacis Island Sustainability Academy to support innovative research and demonstration projects in liquid waste management. *Facility by 2011*
- 3.2.2 Collaborate with local and senior governments, academic institutions and industry in research on wastewater treatment technology and stormwater management and associated demonstration projects, training and development of educational toolkits. *Ongoing*

Goal 1: Protect public health and the environment

Goal 2: Use liquid waste as a resource

Goal 3: Effective, affordable and collaborative management

8. Bypass conditions that occur at wastewater treatment plants will be reported out in the annual quality control report. The report on each activity will include a description of the event, cause, environmental effect and monitoring that occurred and any mitigation measures undertaken to prevent reoccurrence and remediate detrimental environment effect.

Minister of Environment, Terry Lake, 2011

2021 – Environment Management and Quality Control Annual Report

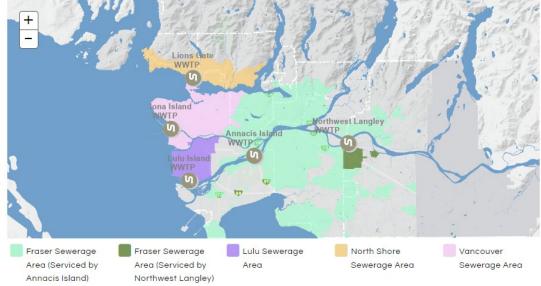
 TABLE 3.4
 ANNACIS ISLAND WWTP – CATEGORY 1 EVENTS REPORTED TO THE MOECCS

Plant	Date	Description	Quantity Discharged	Duration	Probable Cause	Mitigation Measures	Potential Environmental Effects
Annacis Island	Apr 21	Secondary clarifier influent discharge	Approximately 15,110 litres	20.2 minutes	Power disruption stopped operation of a sump pump installed in a manhole to collect intermittent flow of secondary clarifier influent to another portion of the plant for treatment.	Restored power to sump pump installed at the manhole.	Adverse effects to flora and to aquatic and terrestrial habitats were not observed. Fauna were not observed.
Annacis Island	May 27	Discharge of treated wastewater that may not have been fully disinfected **	2.05 million litres	6.02 minutes	Loss of power from BC Hydro.	Not applicable	The applicable Health Canada Recreational Water Quality Guidelines were predicted to have been met at designated primary recreation areas. The applicable BC MOECCS Water Quality Guidelines for fecal coliforms were predicted to have been met at known registered water license diversion points. The applicable BC MOECCS Ambient Water Quality Guideline for chlorine were expected to have been met in the Fraser River.*

TABLE 4.3 IONA ISLAND WWTP – CATEGORY 1 EVENTS REPORTED TO THE MOECCS

Plant	Date	Description	Quantity Discharged	Duration	Probable Cause	Mitigation Measures	Potential Environmental Effects
lona Island	Jan 3	Municipal wastewater discharge	Approximately 62,000 litres	1311.8 minutes	Heavy rainfall caused intermittent leaks from the effluent conduit.	Repaired leaks at expansion joints.	The applicable water quality guidelines for the protection of estuarine or marine aquatic life we met. Adverse effects to flora and to aquatic and terrestrial habitats were not observed. Fauna were not observed.
lona Island	Jan 12	Municipal wastewater discharge	Approximately 2,090,000 litres	106.6 minutes	Reset of a backup communication device unexpectedly affected electrical system, resulting in power interruptions which led to emergency closure of WWTP influent gates.	Restored power. Completed pipeline inspection. Confirmed that no overflows were noted in other areas.	The applicable water quality guidelines for the protection of estuarine or marine aquatic life we met with the exception of pH. It is unclear if observed pH is attributable to the overflow event, or to freshwater inputs to the Fraser River North Arm at sampling site from nearby Musqueam Creek, which are anticipated to be slightly more acidic than

PQM - Project History

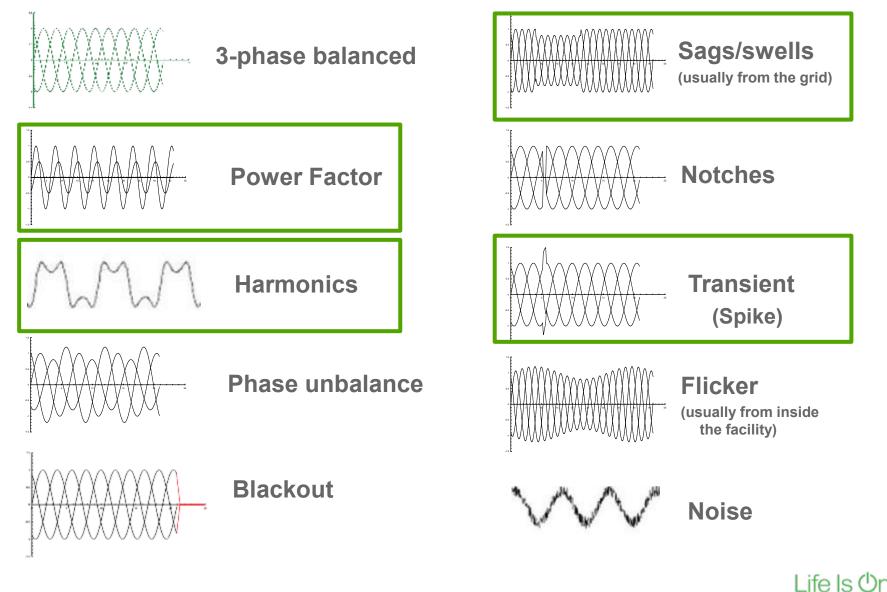

1. MV - RFP - 2017

Power Quality Monitoring System

The PQM system will be used for power quality monitoring, disturbance

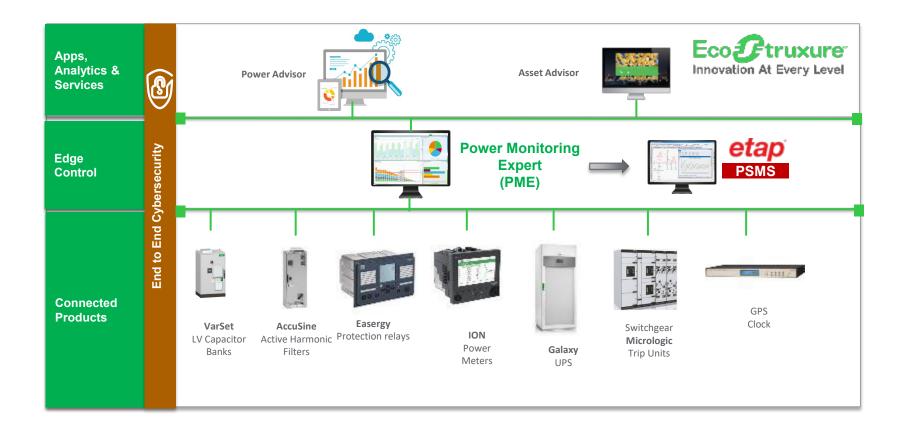
investigation, and energy management monitoring and data recording,

for installation at key locations throughout the <mark>five</mark> Wastewater Treatment Plants (WWTP) electrical distribution systems in the Metro Vancouver area.



Power Quality - Definition

- Power Quality is the degree to which both the <u>utilization</u> and <u>delivery</u> of electric power affects the <u>performance</u> of electrical equipment.
- Any deviation to the <u>magnitude</u> or <u>frequency</u> of the <u>ideal sinusoidal</u> voltage waveform can be regarded as a Power Quality disturbance.
- Performance measures and operating guidelines for electrical equipment may be defined in <u>standards</u>, policies and procedures (IEEE, IEC 61000 4-30, etc)


Power Quality - Waveforms

Schneider

Electric

Power Quality Monitoring System

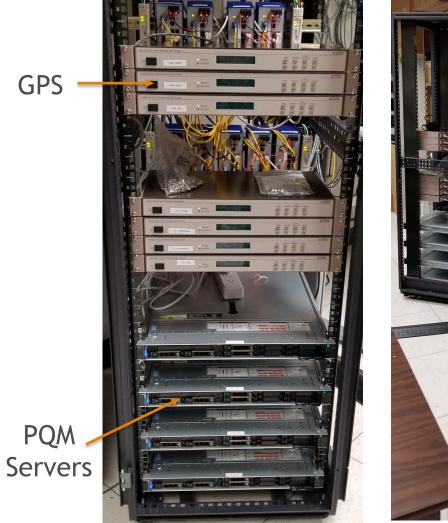
Life Is On Schneider

Advance Power Quality Analysis Meter

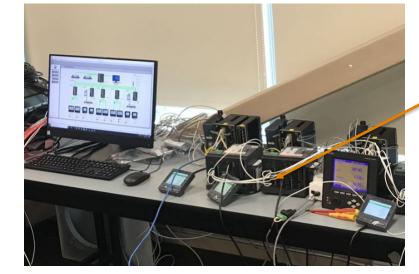
ION7650 PQ Meter

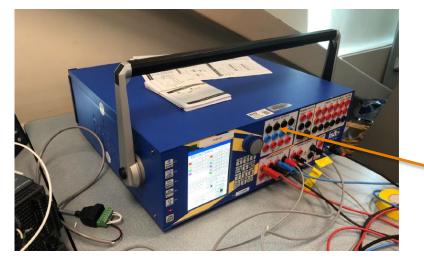
ION9000

PQ Meter



- Real Time Monitoring
- Advanced power quality analysis
 - Disturbance Detection: Sag/Swell/Transients
 - Disturbance Direction Detection: Upstream / Downstream
 - Waveform Captures
 - Harmonic Monitoring
 - IEEE 519
 - IEC 61000-4-30
- Time Synchronization -> 1 ms
- Revenue accuracy
- Multiple communications options
- Control capabilities
- Trending and forecasting



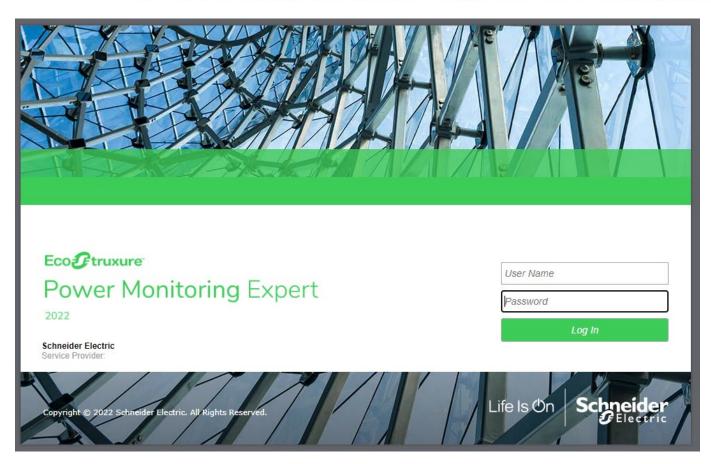

PQM – FAT

GPS

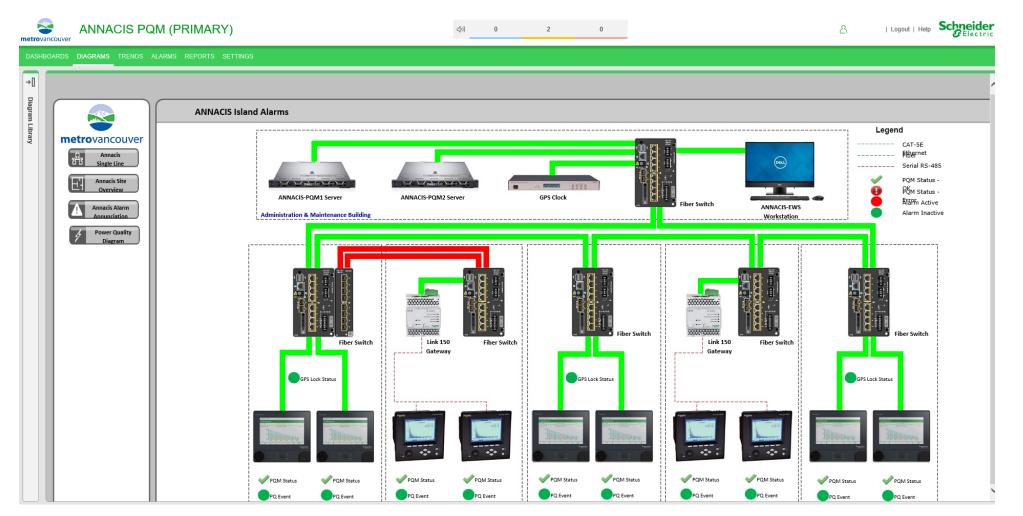
ION9000 Power Meters

Test kit

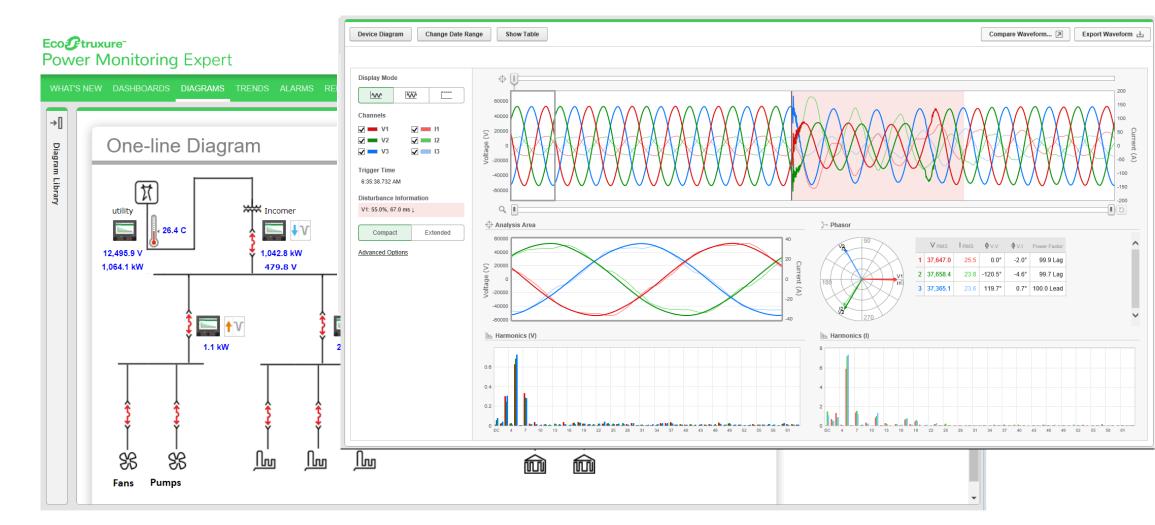
PQM – Site Equipment



PQM Interface


Power Monitoring Expert gives insight into electrical system health and energy efficiency

- Open, scalable architecture
- Convert data into action
- Modular digital applications
- Energy visualization and analysis tools



PQM – Real Time Monitoring - Comms

Power Monitoring Expert (PME)

PQM – Real Time Monitoring

Power Monitoring Expert (PME)

Life Is On

Schneider

General

PQM – Power Event Analysis

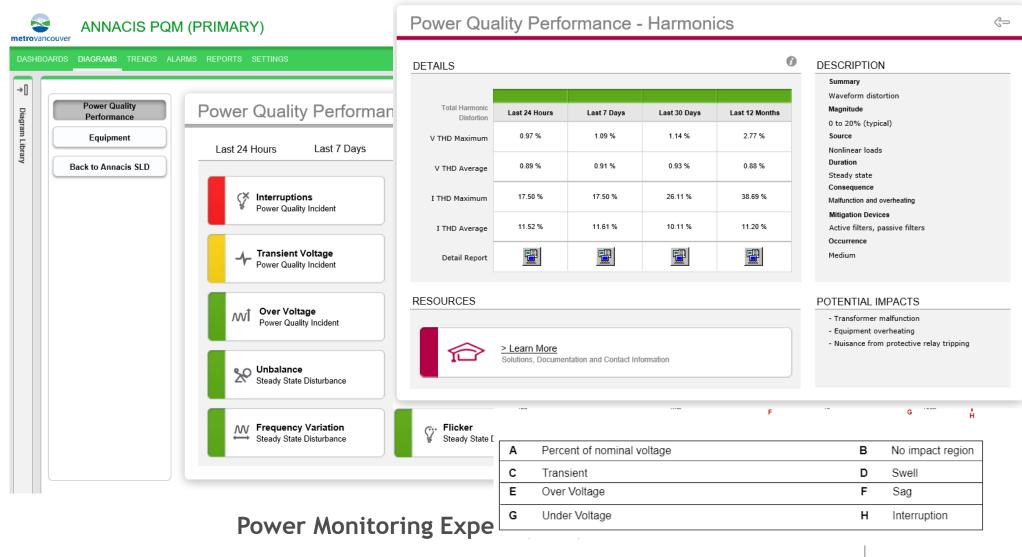
ncident History – Power Quality Incidents	Last 90 Days	ncident Display
Load Loss 12%) 8 Sags, Unclassified Disturbance (89.1% Nominal Voltage – 9 Alarms) † 9 Devices	2 months 17 days ago Duration: 4 min 25 sec	
8 Sags, Unclassified Disturbance (87.0% Nominal Voltage – 9 Alarms) ↑ 9 Devices	2 months 17 days ago Duration: 4 min 25 sec	
7 Unclassified Disturbances 7 Devices	2 months 20 days ago Duration: 4 min 23 sec	
7 Unclassified Disturbances 7 Devices .	2 months 21 days ago Duration: 4 min 23 sec	
7 Sags, 3 Unclassified Disturbances (87.1% Nominal Voltage – 10 Alarms) † 10 Devices	2 months 21 days ago Duration: 4 min 22 sec	
Load Loss 8 >> 20 Sags (86.2% Nominal Voltage) ↑ 10 Devices	2 months 21 days ago Duration: 4 min 33 sec	
4 Transients (142.0% Nominal Voltage) ↑ 4 Devices	2 months 22 days ago Duration: 779.0 ms	
7 Transients (129.0% Nominal Voltage)	2 months 22 days ago	, ET

Power Monitoring Expert (PME)

↑ Sag – 89.3% Nominal Voltage IPS.

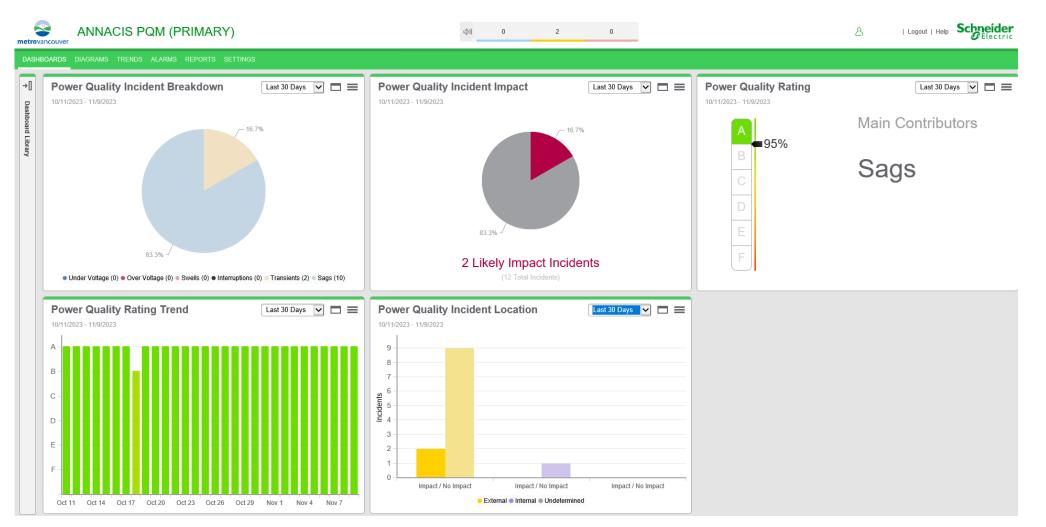
Waveform - Entire Sag IPS.

Current Blower. .


•

90.17

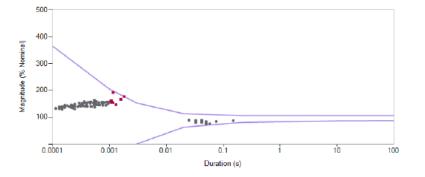
Ξv


PQM – Real Time Monitoring

Life Is On

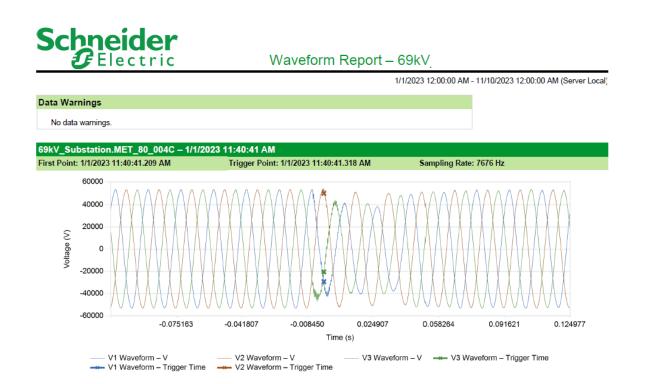
Schneider RElectric

PQM – PQ Dashboard


Power Monitoring Expert (PME)

PQM – Reports

Schneider Gelectric


Power Quality 1/1/2023 12:00:00 AM - 11/10/2023 12:00:00 AM (Server Local)

Summary	
Number of Incidents	135
Inčlacht/intervaings.	20 seconds
Number of Disturbances	341

- Cbema 2 High - Cbema 2 Low • Severe Incidents • Incidents

Worst Disturbance per Incident								
ID	Incident Time	Meter	Туре	Phase	Duration (s)	Magnitude (%)		
1	1/19/2023 4:58:13 PM	69kV	Transient	V3	0.000358	158.00		
2	1/19/2023 5:36:56 PM	69kV	Transient	V3	0.000113	133.00		
3	1/20/2023 4:58:23 PM	69kV	Transient	V2	0.000813	155.00		
4	1/22/2023 11:06:34 PM	69kV	Sag	V1	0.150	86.75		
5	1/23/2023 7:03:01 AM	69kV	Transient	V1	0.000553	163.00		
6	1/23/2023 4:18:46 PM	69kV	Transient	V2	0.000928	156.00		

Power Monitoring Expert (PME)

PQM – Energy Dashboard

Power Monitoring Expert (PME)

der tric

Lessons Learned

- 1. Collaborative approach consultant, technology partner, end user
- 2. Proper planning is key: specifications, hardware, FAT, execution
- 3. Documentation
- 4. Ownership Champion
- 5. Training
- 6. Regular touch points System Health and Maintenance

Life Is On Schneider

